Análisis temporal de la variación de la superficie del glaciar del Nevado Chimborazo durante el periodo 2010 – 2015

Authors

DOI:

https://doi.org/10.26820/reciamuc/9.(4).diciembre.2025.2-16

Keywords:

Glaciar, Chimborazo, Teledetección, Cambio climático, Los Andes, Hidrología

Abstract

Este estudio analiza la variación temporal de la superficie glaciar del Nevado Chimborazo entre 2010 y 2015 y su relación con variables climáticas y ecológicas, considerando su relevancia como indicador del cambio climático en los Andes tropicales. Se aplicó un análisis multitemporal de imágenes satelitales Landsat 7 ETM+, Landsat 8 OLI/TIRS y MODIS, corregidas atmosférica y geométricamente, delimitando las áreas glaciares mediante el índice NDSI y clasificadores supervisados y no supervisados. Los resultados muestran una reducción de la superficie glaciar de 18,2 a 15,8 km² (–13,1 %), con una pérdida media anual de 0,48 km² y un ajuste lineal R² = 0,97. La correlación negativa entre temperatura y área glaciar (r = –0,87) confirma la alta sensibilidad térmica de la masa de hielo, mientras que la precipitación (r = +0,41) tuvo un efecto moderador. En paralelo, el Índice de Vegetación Mejorado (EVI) aumentó de 0,19 a 0,34 (+79 %), correlacionándose inversamente con la pérdida glaciar (r = –0,82), lo que evidencia una recolonización vegetal en la franja periglaciar (3800–4200 m s. n. m.). Estos resultados demuestran que el retroceso glaciar no solo refleja el impacto climático regional, sino que también impulsa procesos ecológicos de sucesión vegetal en los ecosistemas altoandinos. Se recomienda fortalecer los sistemas de monitoreo glaciológico integrando parámetros hidrológicos y ecológicos para una gestión sostenible de los recursos hídricos andinos.

Downloads

Download data is not yet available.

Author Biographies

Jaime Adres Cadena Iturralde, Universidad Agraria del Ecuador

Magíster en Salud y Seguridad Ocupacional Mención en Prevención de Riesgos Laborales; Máster en Project Management; Ingeniero Ambiental; Docente de Ingeniería Ambiental, Universidad Agraria del Ecuador; Guayaquil, Ecuador

Pedro David Fuentes Vásquez, Universidad Agraria del Ecuador

Magíster en Protección Vetal; Ingeniero Agrónomo; Docente de Ingeniería Ambiental, Universidad Agraria del Ecuador; Guayaquil, Ecuador

Elvis Renato Flores Abad, Universidad Agraria del Ecuador

Magíster en Gestión Ambiental; Ingeniero Ambiental; Docente de Ingeniería Ambiental, Universidad Agraria del Ecuador; Guayaquil, Ecuador

References

Gorin AL, Shakun JD, Jones AG, Kennedy TM, Marcott SA, Goehring BM, et al. Recent tropical Andean glacier retreat is unprecedented in the Holocene. Science (1979) [Internet]. 2024 Aug 2 [cited 2025 Nov 5];385(6708):517–21. Available from: /doi/pdf/10.1126/science.adg7546?download=true

Arias P, Bellouin N, Coppola E, Jones R, Krinner G, Marotzke J, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary. 2021 [cited 2025 Nov 5]; Available from: https://www.ipcc.ch/report/ar6/wg1/

Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci Data. 2018 Jan 9;5.

Caro A, Condom T, Rabatel A, Champollion N, García N, Saavedra F. Hydrological response of Andean catchments to recent glacier mass loss. Cryosphere. 2024 May 22;18(5):2487–507.

Ochoa-Tocachi BF, Buytaert W, De Bièvre B, Célleri R, Crespo P, Villacís M, et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol Process. 2016 Oct 30;30(22):4074–89.

Baraer M, Mark BG, Mckenzie JM, Condom T, Bury J, Huh KI, et al. Glacier recession and water resources in Peru’s Cordillera Blanca. Journal of Glaciology [Internet]. 2012 Feb [cited 2025 Nov 5];58(207):134–50. Available from: https://www.cambridge.org/core/journals/journal-of-glaciology/article/glacier-recession-and-water-resources-in-perus-cordillera-blanca/5CEA7495D2BF050058A6B7280FE89A12

Kneib M, Cauvy-Fraunié S, Escoffier N, Boix Canadell M, Horgby, Battin TJ. Glacier retreat changes diurnal variation intensity and frequency of hydrologic variables in Alpine and Andean streams. J Hydrol (Amst) [Internet]. 2020 Apr 1 [cited 2025 Nov 5];583:124578. Available from: https://www.sciencedirect.com/science/article/abs/pii/S002216942030038X

Guzmán Y Valle E, Mater A, Magisterio D, Facultad N, Ciencias DE. UNIVERSIDAD NACIONAL DE EDUCACIÓN Clima: concepto, climas ecológicos: macroclima, microclima y mesoclima.

Mark BG, French A, Baraer M, Carey M, Bury J, Young KR, et al. Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Change [Internet]. 2017 Dec 1 [cited 2025 Nov 5];159:61–76. Available from: https://www.sciencedirect.com/science/article/pii/S0921818117301935

Thompson LG, Davis ME, Mosley-Thompson E, Porter SE, Corrales GV, Shuman CA, et al. The impacts of warming on rapidly retreating high-altitude, low-latitude glaciers and ice core-derived climate records. Glob Planet Change [Internet]. 2021 Aug 1 [cited 2025 Nov 5];203:103538. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0921818121001235

Cayo EYT, Borja MO, Espinoza-Villar R, Moreno N, Camargo R, Almeida C, et al. Mapping Three Decades of Changes in the Tropical Andean Glaciers Using Landsat Data Processed in the Earth Engine. Remote Sens (Basel) [Internet]. 2022 May 1 [cited 2025 Nov 5];14(9):1974. Available from: https://www.mdpi.com/2072-4292/14/9/1974/htm

Zhao Z, Lu C, Tonooka H, Wu L, Lin H, Jiang X. Dynamic monitoring of vegetation phenology on the Qinghai-Tibetan plateau from 2001 to 2020 via the MSAVI and EVI. Scientific Reports 2025 15:1 [Internet]. 2025 Jul 16 [cited 2025 Nov 5];15(1):1–12. Available from: https://www.nature.com/articles/s41598-025-11821-1

Zheng W, Zekollari H, Wouters B, Velicogna I, Treichler D, Sutterley T, et al. Community estimate of global glacier mass changes from 2000 to 2023. Nature 2025 639:8054 [Internet]. 2025 Feb 19 [cited 2025 Nov 5];639(8054):382–8. Available from: https://www.nature.com/articles/s41586-024-08545-z

Rodriguez PS;, Schwantes AM;, Gonzalez A;, Fortin MJ, Rodriguez PS, Schwantes AM, et al. Monitoring Changes in the Enhanced Vegetation Index to Inform the Management of Forests. Remote Sensing 2024, Vol 16, Page 2919 [Internet]. 2024 Aug 9 [cited 2025 Nov 5];16(16):2919. Available from: https://www.mdpi.com/2072-4292/16/16/2919/htm

Masiokas MH, Rabatel A, Rivera A, Ruiz L, Pitte P, Ceballos JL, et al. A Review of the Current State and Recent Changes of the Andean Cryosphere. Front Earth Sci (Lausanne) [Internet]. 2020 Jun 23 [cited 2025 Nov 5];8:503838. Available from: www.frontiersin.org

Cepeda Arias E, Cañon Barriga J, Salazar JF. Changes of streamflow regulation in an Andean watershed with shrinking glaciers: implications for water security. Hydrological Sciences Journal [Internet]. 2022 Aug 18 [cited 2025 Nov 5];67(11):1755–70. Available from: https://www.tandfonline.com/doi/pdf/10.1080/02626667.2022.2105650

Chahbi M, El Ganadi Y, Idrissi Gartoumi K. Monitoring urban vegetation by GeoAI driven multi-scale indices: a case study of Rabat, Morocco. Journal of Umm Al-Qura University for Engineering and Architecture 2025 16:3 [Internet]. 2025 Jun 4 [cited 2025 Nov 5];16(3):649–63. Available from: https://link.springer.com/article/10.1007/s43995-025-00153-w

Lai Y, Tang H, Zhan C, Hong S, Ran Q. Evaluating the cumulative and time-lag effects of vegetation response to drought in the Lancang-Mekong River basin. Ecol Indic [Internet]. 2025 Sep 1 [cited 2025 Nov 5];178:114113. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X25010453

Al-Yaari A, Condom T, Junquas C, Rabatel A, Ramseyer V, Sicart JE, et al. Climate Variability and Glacier Evolution at Selected Sites Across the World: Past Trends and Future Projections. Earths Future [Internet]. 2023 Oct 1 [cited 2025 Nov 5];11(10):e2023EF003618. Available from: /doi/pdf/10.1029/2023EF003618

Franquesa M, Reig F, Arretxea M, Adell-Michavila M, Halifa-Marín A, Vilas D, et al. Near-real-time vegetation monitoring and historical database (1981-present) for the Iberian Peninsula and the Balearic Islands. Earth Syst Sci Data [Internet]. 2025 [cited 2025 Nov 5];17:5885–902. Available from: https://doi.org/10.5194/essd-17-5885-2025

Hall DK, Riggs GA, Salomonson V V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ [Internet]. 1995 Nov 1 [cited 2025 Nov 5];54(2):127–40. Available from: https://www.sciencedirect.com/science/article/abs/pii/003442579500137P

Hernan Bolívar-Torres H, Suárez-Valencia JE, Ramos-Madrigal C, Corzo-Acosta A, Reyes-Ayala KI, Delgado-Correal C, et al. Extreme Environments of Latin America: Natural Laboratories for Astrobiology. 2025 Aug 1 [cited 2025 Nov 5]; Available from: https://eartharxiv.org/repository/view/9778/

Stansell ND, Abbott MB, Diaz MB, Licciardi JM, Mark BG, Polissar PJ, et al. Pre-industrial Holocene glacier variability in the tropical Andes as context for anthropogenically driven ice retreat. Glob Planet Change [Internet]. 2023 Oct 1 [cited 2025 Nov 5];229:104242. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0921818123002151

Conlon T, Small C, Modi V. A Multiscale Spatiotemporal Approach for Smallholder Irrigation Detection. Frontiers in Remote Sensing [Internet]. 2022 Apr 14 [cited 2025 Nov 5];3:871942. Available from: www.frontiersin.org

Mizen A, Thompson DA, Watkins A, Akbari A, Garrett JK, Geary R, et al. The use of Enhanced Vegetation Index for assessing access to different types of green space in epidemiological studies. Journal of Exposure Science & Environmental Epidemiology 2024 34:5 [Internet]. 2024 Feb 29 [cited 2025 Nov 5];34(5):753–60. Available from: https://www.nature.com/articles/s41370-024-00650-5

Gualco LF, Maisincho L, Villacís M, Campozano L, Favier V, Ruiz-Hernández JC, et al. Assessing the Contribution of Glacier Melt to Discharge in the Tropics: The Case of Study of the Antisana Glacier 12 in Ecuador. Front Earth Sci (Lausanne) [Internet]. 2022 Apr 14 [cited 2025 Nov 5];10:732635. Available from: www.frontiersin.org

García-Ruiz JM, Arnáez J, Lasanta T, Nadal-Romero E, López- Moreno JI. Mountain Environments: Changes and Impacts. 2024 [cited 2025 Nov 5]; Available from: https://link.springer.com/10.1007/978-3-031-51955-0

Melo K da S, Delgado RC, Mendonça APT. Precipitation Trends and Andean Snow Cover: Climate Interactions and Hydrological Impacts in the Acre River Basin (1982–2023). Atmosphere 2025, Vol 16, Page 249 [Internet]. 2025 Feb 22 [cited 2025 Nov 5];16(3):249. Available from: https://www.mdpi.com/2073-4433/16/3/249/htm

Cavieres LA, Llambí LD, Anthelme F, Hofstede R, Arroyo MTK. High-Andean Vegetation Under Environmental Change: A Continental Synthesis. Annu Rev Environ Resour [Internet]. 2025 Oct 6 [cited 2025 Nov 5];50(1):219–45. Available from: https://www.annualreviews.org/content/journals/10.1146/annurev-environ-111523-101920

Schwartz JL, San Pablo P, Juan S, de Chimborazo P. Uncovering Chimborazo’s Catchments: Insights into the fluvial network, str Características del equipo y patrones hidrológicos en la Reserva de Producción de Fauna del Chimborazo del Ecuador.aufirst. Proyecto de Estudio Independiente Colección ISP [Internet]. 2024 Apr 1 [cited 2025 Nov 5]; Available from: https://digitalcollections.sit.edu/isp_collection/3809

M Patrick WF. Hydrological patterns of the Chimborazo Reserve: Streamflow, climate, and glacier recession data show a loss of glacial influence on the southwestern aspect of the Chimborazo volcano, Ecuador. [cited 2025 Nov 5]; Available from: https://digitalcollections.sit.edu/isp_collection

Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, et al. Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth Sci Rev. 2018 Jan 1;176:195–213.

Mark BG, French A, Baraer M, Carey M, Bury J, Young KR, et al. Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Change. 2017 Dec 1;159:61–76.

Turner SA, Vuille M, Rabatel A. Constraining Future Projections of Freezing Level Height and Equilibrium-Line Altitudes in the Tropical Andes Based on CMIP6. Journal of Geophysical Research: Atmospheres [Internet]. 2025 Jun 16 [cited 2025 Nov 5];130(11):e2024JD042963. Available from: /doi/pdf/10.1029/2024JD042963

Polk MH, Young KR, Baraer M, Mark BG, McKenzie JM, Bury J, et al. Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Applied Geography [Internet]. 2017 Jan 1 [cited 2025 Nov 5];78:94–103. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0143622816307329

Lüthy L, Chapman CA, Lauer P, Omeja P, Kalbitzer U. Solar radiation and atmospheric CO$_2$ predict young leaf production in a moist evergreen tropical forest: Insights from 23 years. 2025 Jan 13 [cited 2025 Nov 5]; Available from: https://arxiv.org/pdf/2501.07620

Aranda F, Medina D, Castro L, Ossandón Á, Ovalle R, Flores RP, et al. Snow Persistence and Snow Line Elevation Trends in a Snowmelt-Driven Basin in the Central Andes and Their Correlations with Hydroclimatic Variables. Remote Sensing 2023, Vol 15, Page 5556 [Internet]. 2023 Nov 29 [cited 2025 Nov 5];15(23):5556. Available from: https://www.mdpi.com/2072-4292/15/23/5556/htm

Aklilu Tesfaye A, Gessesse Awoke B. Evaluation of the saturation property of vegetation indices derived from sentinel-2 in mixed crop-forest ecosystem. Spatial Information Research. 2021 Feb 1;29(1):109–21.

Campozano L, Célleri R, Trachte K, Bendix J, Samaniego E. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study. Advances in Meteorology [Internet]. 2016 Jan 1 [cited 2025 Nov 5];2016(1):3192765. Available from: /doi/pdf/10.1155/2016/3192765

Vaca-Cárdenas PV, Muñoz-Jácome EA, Vaca-Cárdenas ML, Cushquicullma-Colcha DF, Guerrero-Casado J. The Recent Extinction of the Carihuairazo Volcano Glacier in the Ecuadorian Andes Using Multivariate Analysis Techniques. Earth 2025, Vol 6, Page 86 [Internet]. 2025 Aug 1 [cited 2025 Nov 5];6(3):86. Available from: https://www.mdpi.com/2673-4834/6/3/86/htm

Díaz JA, Montecinos M, Vega A, Gironás J, Molinos M, Pastén P. Impacts of Droughts on Water Quality: Processes and Monitoring. Global Issues in Water Policy [Internet]. 2025 [cited 2025 Nov 5];31:89–124. Available from: https://link.springer.com/chapter/10.1007/978-3-031-85040-0_6

Carrivick JL, Davies M, Wilson R, Davies BJ, Gribbin T, King O, et al. Accelerating Glacier Area Loss Across the Andes Since the Little Ice Age. Geophys Res Lett [Internet]. 2024 Jul 16 [cited 2025 Nov 5];51(13):e2024GL109154. Available from: /doi/pdf/10.1029/2024GL109154

Meraj G, Hashimoto S, Kumar P. Foundations and Frontiers of Natural Hazard Management in Mountainous Regions. 2024;1–9.

Published

2025-11-11

How to Cite

Cadena Iturralde, J. A., Fuentes Vásquez, P. D. ., & Flores Abad, E. R. (2025). Análisis temporal de la variación de la superficie del glaciar del Nevado Chimborazo durante el periodo 2010 – 2015. RECIAMUC, 9(4), 2-16. https://doi.org/10.26820/reciamuc/9.(4).diciembre.2025.2-16

Issue

Section

Artículos de Revisión